هدف ما از انجام این پروژه چیست؟
در این بخش قصد داریم سنسور ICM20689 را به وسیله میکروکنترلر آرم، سری STM32F راه اندازی کنیم. به منظور استفاده راحت تر و بهینه تر در این پروژه از دو ماژول آماده GB306IM و GebraBit STM32F303 استفاده میکنیم.
این دو ماژول شامل مینیمم قطعات لازم سنسور ICM20689و میکروکنترلر STM32F میباشند که توسط تیم جبرابیت جهت آسان سازی کار فراهم شده اند.
در این آموزش چه چیزهایی یاد میگیریم؟
شما در این بخش ضمن راه اندازی و استفاده از سنسورICM20689 ، به طور خلاصه با تمامی رجیسترهای سنسور ICM20689، نحوه تنظیم بخش های مختلف میکروکنترلر STM32 برای راه اندازی این سنسور با استفاده از پروتکل SPI، چگونگی استفاده از فایل کتابخانه و درایور مختص ماژول GB6306IM، نحوه فراخوانی توابع و در نهایت دریافت داده های سنسور در کامپایلر Keil نیز آشنا خواهید شد.
برای شروع این پروژه به چه چیزهایی نیاز داریم؟
برای اجرای این پروژه به سختافزار و نرمافزار نیاز داریم. عناوین این سختافزارها و نرمافزارها در جدول زیر به شما ارائه شده است و میتوانید با کلیک بر روی هر یک، آن را تهیه/دانلود کرده و برای شروع آماده شوید.
سخت افزارهای مورد نیاز | نرمافزارهای مورد نیاز |
---|---|
ST-LINK/V2 Programmer | Keil uVision Programmer |
STM32 Microcontroller – ( Gebra STM32f303 ) | STM32CubeMX Program |
ماژول ژیروسکوپ و شتابسنج Gebra ICM20689 | |
Cable and Breadboard |
برای انجام این کار، ابتدا باید پروتکل ارتباطی SPI را با استفاده از جامپرهای روی برد انتخاب کنیم. سپس ماژول GebraBit ICM20689 را به صورت pin to pin روی ماژول GebraBit STM32F303 همانطور که در تصویر زیر نشان داده شده است قرار می دهیم:

توجه: لطفاً توجه داشته باشید که تصویر بالا فقط برای نشان دادن نحوه قرارگیری ماژول GebraBit ICM20689 به صورت Pin to Pinروی ماژول GebraBit STM32F303 است. بنابراین، برای استفاده از پروتکل ارتباطی SPI، جامپرهای مربوط به پرتکل ارتباطی باید روی حالت SPI قرار گیرند.
در نهایت، در پنجره «Watch 1» کامپایلر Keil در حالت « Debug Session »، میتوانید مقادیر دما، شتاب و سرعت زاویهای را در امتداد سه محور «X، Y، Z» در زمان واقعی مشاهده کنید.
تنظیمات STM32CubeMX
در ادامه تنظیمات مربوط به هریک از بخش های SPI , RCC , Debug , Clock را در میکروکنترلر STM32F303 برای راه اندازی ماژول GebraBit ICM20689 را بررسی خواهیم کرد.
RCC / Clock تنظیمات
بهدلیل وجود کریستال خارجی (External Crystal) در برد جبرابیت STM32F303، در بخش “RCC” گزینه “Crystal/Ceramic Resonator” را انتخاب میکنیم.

سپس از صفحه Clock Configuration حالت PLLCLK را انتخاب کرده و سایر تنظیمات لازم را انجام میدهیم (برای اطلاعات بیشتر کلیک کنید).

Debug & Programming تنظیمات
برای کاهش تعداد پایهها در زمان Debug and Program، در این ماژول گزینه “Serial Wire” را از بخش “Debug” در بلوک “SYS” انتخاب میکنیم که مربوط به پایههای “SWCLK” و “SWDIO” است.

تنظیمات SPI
برای ارتباط از طریق SPI با ماژول GebraBit STM32F303 حالت Full Duplex Master را انتخاب کرده و پین های PB3 و PB4 و PB5 را به عنوان SCK و MISO و MOSI و پین PC13 را CS انتخاب می کنیم :

با توجه به دیتاشیت سنسور ، تنظیمات پارامتر های SPI در بخش Parameter Settings همانند تصویر بالا مقدار دهی خواهد شد.
Project Manager تنظیمات
تنظیمات “Project Manager” به صورت زیر است؛ در اینجا از نسخه “5.32” محیط توسعه “MDK-ARM” استفاده کردهایم. اگر شما برای برنامهنویسی از محیط توسعه دیگری استفاده میکنید، باید از قسمت Toolchain گزینه مربوط به IDE مورد استفاده خود را انتخاب کنید.

پس از تکمیل تمامی تنظیمات بالا، روی گزینه GENERATE CODE کلیک میکنیم.
کتابخانه پروژه (Library)
جبرابیت علاوه بر طراحی ماژولار انواع حسگرها و قطعات مجتمع، برای سهولت در نصب و توسعه نرمافزار توسط کاربران، مجموعهای از کتابخانههای ساختاریافته و مستقل از سختافزار را به زبان C ارائه میدهد. در این راستا، کاربران میتوانند کتابخانهی مربوط به ماژول مورد نظر خود را در قالب فایلهای “.h” و “.c” دانلود کنند.
با افزودن کتابخانهی ارائهشده توسط جبرابیت به پروژه (راهنمای افزودن فایل به پروژه)، میتوانیم بهراحتی کد خود را توسعه دهیم. فایلهای مربوطه را میتوانید در انتهای پروژه یا در بخش صفحات مرتبط در سمت راست مشاهده کنید.
تمام توابع تعریفشده در کتابخانه با جزئیات کامل توضیح داده شدهاند و کلیه پارامترهای ورودی و مقادیر بازگشتی هر تابع بهصورت مختصر شرح داده شده است. از آنجا که این کتابخانهها مستقل از سختافزار هستند، کاربر میتواند آنها را بهسادگی به کامپایلر دلخواه خود اضافه کرده و با میکروکنترلر یا برد توسعه مورد نظر خود استفاده کند.
فایل هدر GebraBit_ICM20689.h
در این فایل بر اساس دیتاشیت سنسور یا ای سی ، تمامی آدرس رجیسترها، مقادیر هریک از رجیسترها به صورت Enumeration تعریف شده است.همچنین بدنه سنسور ICM20689 و کانفیگ های مربوط به هریک از بلوک های داخلی سنسور ICM20689 به صورت STRUCT با نام GebraBit_ICM20689 نیز تعریف شده است.که نهایتا در محیط Debug Session تمامی کانفیگ های مربوط به هر بلوک به صورت Real Time قابل مشاهده است.
فایل سورس GebraBit_ICM20689.c
در این فایل که به زبان C نوشته شده ، تمامی توابع با جزئیات کامل، کامنت گذاری شده و تمامی پارامتر های دریافتی در آرگومان توابع و مقادیر بازگشتی از آنها ، بطور واضح توضیح داده شده است.از این رو در این قسمت به همین توضیحات اکتفا کرده و کاربران را برای اطلاعات بیشتر به بررسی مستقیم از این فایل دعوت می کنیم.
برنامه نمونه در Keil
بعد از تولید پروژه Keil با استفاده از STM32CubeMX و اضافه کردن کتابخانه GebraBit_ICM20689.c ارائه شده توسط GebraBit ، به بررسی قسمت اصلی برنامه آموزشی نمونه، فایل main.c و مشاهده خروجی ماژول GebraBit ICM20689 در قسمت watch در محیط Debugging برنامه Keil می پردازیم.
شرح فایل main.c
اگر به ابتدای فایل main.c دقت کنید،متوجه می شوید که هدر GebraBit_ICM20689.h برای دسترسی به ساختار ها ، Enum ها و توابع مورد نیاز ماژول GebraBit ICM20689 ، اضافه شده است.در قسمت بعدی متغیری به نام ICM20689_Module از نوع ساختار GebraBit_ICM20689 (این ساختار در هدر GebraBit_ICM20689 بوده و در بخش توضیحات کتابخانه GebraBit_ICM20689توضیح داده شد) که برای پیکربندی ماژول GebraBit ICM20689 می باشد،تعریف شده است:
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
GebraBit_ICM20689 ICM20689_Module;
/* USER CODE END PTD */
در بخش بعدی کد نوشته شده، پیکربندی و تنظیمات ماژول GebraBit ICM20689 با استفاده از توابع GB_ICM20689_initialize() و GB_ICM20689_Configuration()، انجام شود:
GB_ICM20689_initialize( &ICM20689_Module );
GB_ICM20689_Configuration(&ICM20689_Module ,FIFO_ENABLE);
//GB_ICM20689_Configuration(&ICM20689_Module , FIFO_DISABLE );
و در نهایت در قسمت while برنامه ، مقادیر ماژول GebraBit ICM20689 در 3 محور X , Y , Z و دما به طور پیوسته دریافت میشود:
GB_ICM20689_Get_Data( &ICM20689_Module , FROM_FIFO );
//GB_ICM20689_Get_Data( &ICM20689_Module , FROM_REGISTER );
با خارج کردن توابع GB_ICM20689_Configuration(&ICM20689_Module , FIFO_DISABLE ); و GB_ICM20689_Get_Data( &ICM20689_Module , FROM_REGISTER ); می توان مقادیر داده ها را مستقیم از رجیستر های داده خواند.
STLINK V2
پس از ایجاد پروژه Keil با استفاده از STM32CubeMX و افزودن کتابخانه، آداپتور STLINKV2 را متصل کرده و برنامهنویس STLINK V2 را به برد جبرابیت STM32F303 وصل میکنیم.
وقتی برنامهنویس STLINK V2 را به برد جبرابیت STM32F303 متصل میکنید، نیازی به تغذیه جداگانه ماژول نیست، زیرا ولتاژ تغذیه را مستقیماً از برنامهنویس STLINK V2 دریافت میکند.


سپس روی گزینه Build (F7) کلیک کرده و پنجره Build Output را برای بررسی خطاهای احتمالی کنترل میکنیم.
در نهایت وارد حالت Debug شده و با اضافه کردن ICM20689_Module به پنجره watch و اجرای برنامه ، تغییرات مقادیر دما و ماژول GebraBit ICM20689 را در 3 محور X , Y , Z هم به صورت مستقیم از رجیستر های داده و هم FIFO مشاهده می کنیم.
دریافت داده های سنسور مستقیم از رجیستر های داده

دریافت داده های سنسور از FIFO
